Що таке діагональ?

Діагональ в багатокутнику (багатограннику) – відрізок, що з'єднує будь-які дві несуміжні вершини, тобто, вершини, не належать одній стороні багатокутника (одному ребру багатогранника).

У багатогранників розрізняють діагоналі граней (розглянутих як плоскі багатокутники) і просторові діагоналі, що виходять за межі граней. У багатогранників, що мають трикутні грані є тільки просторові діагоналі.

Підрахунок діагоналей

Діагоналей немає у трикутника на площині і у тетраедра в просторі, оскільки всі вершини цих фігур попарно зв'язані сторонами (ребрами).

Кількість діагоналей N у багатокутника легко обчислити за формулою:

N = n · (n – 3) / 2,

де n – число вершин багатокутника. За цією формулою неважко знайти, що

  • у трикутника – 0 діагоналей
  • у прямокутника – 2 діагоналі
  • у п'ятикутника – 5 діагоналей
  • у шестикутника – 9 діагоналей
  • у восьмикутника – 20 діагоналей
  • у 12-косинця – 54 діагоналі
  • у 24-косинця – 252 діагоналі

Кількість діагоналей багатогранника з числом вершин n легко підрахувати тільки для випадку, коли в кожній вершині многогранника сходиться однакове число ребер k. Тоді можна користуватися формулою:

N = n · (n – k – 1) / 2,

яка даємо сумманое число просторових і граневих діагоналей. Звідси можна знайти, що

  • у тетраедра (n = 4, k = 3) – 0 діагоналей
  • у октаедра (n = 6, k = 4) – 3 діагоналі (всі просторові)
  • у куба (n = 8, k = 3) – 16 діагоналей (12 граневих і 4 просторових)
  • у ікосаедра (n = 12, k = 5) – 36 діагоналей (всі просторові)
  • у Додекаедр (n = 20, k = 3) – 160 діагоналей (25 граневих і 135 просторових)

Якщо в різних вершинах багатогранника сходиться різне число ребер, підрахунок помітно ускладнюється і повинен проводиться індивідуально для кожного випадку.

Фігури з рівними діагоналями

На площині існує два правильних багатокутника, у яких всі діагоналі рівні між собою. Це квадрат і правильний п'ятикутник. У квадрата дві однакових діагоналі, що перетинаються в центрі під прямим кутом. У правильного п'ятикутника п'ять однакових діагоналей, які разом утворюють малюнок п'ятикутної зірки (пентаграми).

Єдиний правильний багатогранник, у якого всі діагоналі рівні між собою – правильний восьмигранник октаедр. У нього три діагоналі, які попарно перпендикулярно перетинаються в центрі. Всі діагоналі октаедра – просторові (діагоналей граней у октаедра немає, тому що у нього трикутні грані).

Крім октаедра є ще один правильний багатогранник, у якого всі просторові діагоналі рівні між собою. Це куб (гексаедр). У куба чотири однакових просторових діагоналі, які також перетинаються в центрі. Кут між дігоналямі куба состаляет або arccos (1/3) ≈ 70,5 ° (для пари діагоналей, проведених до суміжних вершин), або arccos (-1 / 3) ≈ 109,5 ° (для пари діагоналей, проведених до несуміжні вершини ).

Посилання:

  • ru.wikipedia.org – Вікіпедія: Діагональ
  • dic.academic.ru – ілюстрація різниці між граневой і просторової діагоналями багатогранника

Додатково в базі даних Генона:

  • Як знайти діагональ прямокутника?
  • Скільки вершин, ребер і граней у тетраедра?
  • Скільки вершин, ребер і граней у куба (гексаедр)?

Category: Наука та освіта

Comments (Прокоментуй!)

There are no comments yet. Why not be the first to speak your mind.

Leave a Reply